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Abstract. We computed the twist-4 part of the photon spin-flip amplitude in deeply virtual Compton
scattering on a nucleon in the Wandzura–Wilczek approximation. We found a factorizable contribution,
which arises from photon scattering on quarks with non-zero angular momentum along the collision axis.
As the genuine twist-2 amplitude arises at the NLO, for moderate virtualities of the hard photon, Q2 ≤
10GeV2, a kinematical twist-4 correction can give a numerically important contribution to the photon
helicity-flip amplitude.

Introduction

Deeply virtual Compton scattering (DVCS) [1,2] on a nu-
cleon, γ∗N → γN ′, is perhaps the cleanest hard reaction
sensitive to the skewed parton distributions (SPD). For
that reason in recent years DVCS has been the subject
of extensive theoretical investigations. First experimental
data have also recently become available (see e.g. [3–6])
and much more data are expected from JLAB, DESY,
and CERN in the near future. Due to factorization theo-
rems [7–9] the leading term in the 1/Q2 expansion of the
DVCS amplitude, where Q2 is the large virtuality of the
hard photon, can be expressed in terms of twist-2 skewed
parton distributions. However, as the typical experimen-
tally accessible values of Q2 are by no means large, studies
of the power suppressed (higher twist) corrections to the
DVCS amplitude are very important from the phenomeno-
logical point of view. The leading power corrections are
of the order 1/Q, or twist-3, and therefore they may have
significant effects on some of DVCS observables. Note also
that twist-3 corrections typically scale as (−t)1/2/Q, with
t denoting the square of the momentum transfer, so the
size of twist-3 corrections increases with t. It follows that
taking into account these corrections is mandatory for un-
derstanding continuation of the twist-2 part of the DVCS
amplitude to t = 0.

An interesting feature of the DVCS amplitude on a
nucleon is that it receives a contribution from the photon
helicity-flip process, which is forbidden by the angular-
momentum conservation in the forward DIS case. In the
leading-twist approximation, this amplitude appears at
∗ On leave of absence from St.Petersburg Nuclear Physics In-
stitute, 188350, Gatchina, Russia

the NLO level and, if measured, can provide unique in-
formation about the tensor gluon skewed parton distribu-
tion in a nucleon. In this case, analyzing corresponding
power corrections is even more important as there is no
prejudice about how large the twist-2 amplitude can be.
The simplest estimate can be obtained by calculating the
so-called Wandzura–Wilczek, or kinematical power cor-
rections. From a phenomenological point of view such a
calculation is crucial for the future studies of the photon
helicity-flip amplitude in DVCS.

The remainder of this paper is organized as follows: in
the next section we discuss general features of the DVCS
amplitude on the nucleon. The following two sections are
devoted to a discussion of the photon helicity-flip ampli-
tude and to the calculation of the kinematical twist four
correction, respectively. Finally, we conclude this article.
Technical details of the present calculation are summa-
rized in the appendix.

DVCS amplitude on a nucleon

Let p, p′ and q, q′ denote momenta of the initial and final
nucleons and photons, respectively. The amplitude of the
virtual Compton scattering process

γ∗(q) +N(p) → γ(q′) +N(p′), (1)

is defined in terms of the nucleon matrix element of the
T -product of two electromagnetic currents:

Tµν = −i
∫

d4xe−i(q+q′)x/2

× 〈p′|T [Jµe.m.(x/2)Jνe.m.(−x/2)] |p〉, (2)
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where Lorentz indices µ and ν correspond to the virtual,
respectively the real photon.

We shall consider the Bjorken limit, where −q2 =
Q2 → ∞, 2(p · q) → ∞, with xB = Q2/2(p · q) con-
stant, and t ≡ (p−p′)2 
 Q2. We introduce two light-like
vectors n, n∗ such that

n · n = 0, n∗ · n∗ = 0, n · n∗ = 1. (3)

We shall work in a reference frame where the average nu-
cleon momenta P = (1/2)(p+ p′) and the virtual photon
momentum q are collinear along the z-axis and have op-
posite directions. Such a choice of the frame results in the
following decomposition of the momenta [10]:

P = n∗ +
m̄2

2
n,

q = −2ξ′n∗ +
Q2

4ξ′
n,

∆ = p′ − p = −2ξn∗ + m̄2ξn+∆⊥, (4)

with m̄2 = m2−t/4, t = ∆2 being the squared momentum
transfer, and

2ξ = 2ξ′
Q2 − t

Q2 + 4ξ′2m̄2 . (5)

Finally, ξ′ is given by

ξ′ =
2

2 − xB
xB

+ t/Q2 +

√(
2 − xB
xB

+ t/Q2
)2

+ 16
m̄2

Q2

=
xB

2 − xB +O(1/Q2), (6)

with

xB =
Q2

2p · q .

We define the transverse metric and antisymmetric
transverse epsilon tensors1:

gµν⊥ = gµν − nµn∗ ν − nνn∗µ, ε⊥µν = εµναβnαn∗ β . (7)

In the following, we shall use the shorthand notation for

a+ ≡ aµnµ, a− ≡ aµn∗µ, (8)

where aµ is an arbitrary Lorentz vector.
In the LO approximation in the QCD coupling αS,

but including 1/Q corrections, the DVCS amplitude on a
nucleon has the form [11,12]

Tµν = Tµν1 + Tµν2 + Tµν3 , (9)

Tµν1 = −1
2

∫ 1

−1
dx
{[
gµν⊥ +

P ν∆µ⊥
(Pq)

]
nρFρ(x, ξ)C+(x, ξ)

−
[
gνα⊥ +

P ν∆α⊥
(Pq)

]
iε⊥µα n

ρF̃ρ(x, ξ)C−(x, ξ)
}
,(10)

1 The Levi-Civita tensor εµναβ is defined as the totally anti-
symmetric tensor with ε0123 = 1

Tµν2 =
(q + 4ξP )µ

(Pq)

[
gνα⊥ +

P ν∆α⊥
(Pq)

]
×1

2

∫ 1

−1
dx
{
Fα(x, ξ)C+(x, ξ)

−iε⊥αρF̃
ρ(x, ξ)C−(x, ξ)

}
, (11)

Tµ⊥ν
3 =

(q + 2ξP )ν

(Pq)
1
2

∫ 1

−1
dx
{
Fµ⊥(x, ξ)C+(x, ξ)

+iεµρ⊥ F̃ρ(x, ξ)C
−(x, ξ)

}
, (12)

where to the twist-3 accuracy

P =
1
2

(p+ p′) = n∗, ∆ = p′ − p = −2ξP +∆⊥,

q = −2ξP +
Q2

4ξ
n, q′ = q −∆ =

Q2

4ξ
n−∆⊥, (13)

with ξ equal to its leading-order value ξ = xB/(2 − xB).
The leading-order coefficient functions are

C±(x, ξ) =
1

x− ξ + iε
± 1
x+ ξ − iε

,

and the skewed distributions Fµ(x, ξ) and F̃µ(x, ξ) are de-
fined in terms of the nonlocal light-cone quark operators2:

Fµ(x, ξ) =
∫ ∞

−∞

dλ
2π

e−ixλ〈p′|ψ̄
(

1
2
λn

)
γµψ

(
−1

2
λn

)
|p〉,
(14)

F̃µ(x, ξ) =
∫ ∞

−∞

dλ
2π

e−ixλ〈p′|ψ̄
(

1
2
λn

)
γµγ5ψ

(
−1

2
λn

)
|p〉.
(15)

In the above expression for the DVCS amplitude the
first term, Tµν1 , corresponds to the scattering of trans-
versely polarized virtual photons. This part of the ampli-
tude depends only on twist-2 SPDs H,E and H̃, Ẽ. The
twist-3 terms proportional to3 Pµ∆ν⊥/(Pq) are required
to ensure the proper electromagnetic gauge invariance of
the amplitude:

qµT
µν
1 = Tµν1 q′ν = 0. (16)

The second term Tµν2 corresponds to the contribution
of the longitudinal polarization of the virtual photon. This
term depends only on the new “transverse” SPDs Fµ⊥ and
F̃µ⊥ . Defining the longitudinal polarization vector of the
virtual photon by

εµL(q) =
1
Q

(
2ξPµ +

Q

4ξ
nµ
)
, (17)

2 The gauge link between points on the light-cone is not
shown but always assumed

3 We adopt here kinematical definition of twist i.e., terms
suppressed by 1/Q are of twist-3
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one can easily calculate the DVCS amplitude for the lon-
gitudinal polarization of the virtual photon (L→ T tran-
sition), which is purely twist-3:

εLµT
µν⊥ =

2ξ
Q

∫ 1

−1
dx(F ν⊥C+(x, ξ) − iεν⊥α

⊥ F̃αC
−(x, ξ)).

(18)

The skewed parton distributions Fµ and F̃µ can be related
to the twist-2 SPDs H,E, H̃ and Ẽ through the so-called
Wandzura–Wilczek relations [12–17]. To derive these re-
lations one assumes that non-forward nucleon matrix ele-
ments of gauge invariant operators of the type ψ̄Gψ, i.e.
involving quark–gluon correlations, are small. The WW
relations for the case of the nucleon SPDs have the form
[12,15]:

FWWµ (x, ξ) =
∆µ
2ξ

〈〈 1
m

〉〉E(x, ξ) − ∆µ
2ξ

〈〈γ+〉〉(H + E)(x, ξ)

+
∫ 1

−1
duGµ(u, ξ)W+(x, u, ξ)

+iε⊥µα
∫ 1

−1
duG̃α(u, ξ)W−(x, u, ξ), (19)

F̃WWµ (x, ξ) = ∆µ
1
2
〈〈γ5
m

〉〉Ẽ(x, ξ) − ∆µ
2ξ

〈〈γ+γ5〉〉H̃(x, ξ)

+
∫ 1

−1
duG̃µ(u, ξ)W+(x, u, ξ)

+iε⊥µα
∫ 1

−1
duGα(u, ξ)W−(x, u, ξ). (20)

Here we have introduced the shorthand notation 〈〈. . .〉〉 =
Ū(p′) . . . U(p), andm denotes the nucleon mass. Functions
Gµ and G̃µ are defined by

Gµ(u, ξ) = 〈〈γµ⊥〉〉(H + E)(u, ξ)

+
∆µ⊥
2ξ

〈〈 1
m

〉〉
[
u
∂

∂u
+ ξ

∂

∂ξ

]
E(u, ξ) (21)

−∆
µ
⊥

2ξ
〈〈γ+〉〉

[
u
∂

∂u
+ ξ

∂

∂ξ

]
(H + E)(u, ξ),

G̃µ(u, ξ) = 〈〈γµ⊥γ5〉〉H̃(u, ξ)

+
1
2
∆µ⊥〈〈γ5

m
〉〉
[
1 + u

∂

∂u
+ ξ

∂

∂ξ

]
Ẽ(u, ξ)

−∆
µ
⊥

2ξ
〈〈γ+γ5〉〉

[
u
∂

∂u
+ ξ

∂

∂ξ

]
H̃(u, ξ). (22)

The Wandzura–Wilczek kernels W±(x, u, ξ) have been in-
troduced in [12,14,15]. They are defined by

W±(x, u, ξ) (23)

=
1
2

{
θ(x > ξ)

θ(u > x)
u− ξ − θ(x < ξ)θ(u < x)

u− ξ
}

±1
2

{
θ(x > −ξ)θ(u > x)

u+ ξ
− θ(x < −ξ)θ(u < x)

u+ ξ

}
.

The flavor dependence in the amplitude can easily be re-
stored by a substitution:

Fµ(F̃µ) →
∑

q=u,d,s,...

e2qF
q
µ(F̃ qµ). (24)

The amplitude (9) is electromagnetically gauge invari-
ant, i.e.

qµT
µν = Tµν(q −∆)ν = Tµνq′ν = 0, (25)

formally to the accuracy 1/Q2. In order to work with an
amplitude which is transverse in the sense of (25) we have
kept in (11) terms of the ∆2/Q2 order, applying the pre-
scription of [10,18]:

gµν⊥ → gµν⊥ +
P ν∆µ⊥
(P · q′) , (26)

for the twist-3 terms in the amplitude. Although such cor-
rections do not form a complete set of 1/Q2 contributions,
we prefer to work with the DVCS amplitude Tµν2 which
satisfies (25) exactly.

The last term, Tµν3 , corresponds to transverse polariza-
tion of the virtual photon. It is proportional to (q+2ξP ) =
q′ +∆⊥. Contracting with the transverse polarization vec-
tor eν(q′) of the final real photon one obtains

eν(q′)(q + 2ξP )ν = eν(q′)∆ν⊥. (27)

It follows that such a term does not contribute to any
observable with the accuracy O(∆/Q).

In the case of a pion target [14] it has been shown that
the structure (q + 2ξP ) emerges as truncated to the 1/Q
accuracy vector q′. Obviously, such a term, although for-
mally present in the amplitude Tµν , does not contribute
to any physical DVCS amplitude with the real, transverse
photon in the final state. The observation that the am-
plitude Tµν3 has zero projection onto physical states when
the final photon is real is not unexpected. Considering
the situation where both photons are virtual one finds
that the amplitude Tµν3 describes a T → L transition i.e.,
with incoming transverse and outgoing longitudinal pho-
ton, respectively. It therefore has to disappear in the limit
when the outgoing photon is real. Indeed, the contraction
εTµ(q)Tµν3 ε∗Lν(q

′) vanishes when q′2 → 0. The same situ-
ation is expected, of course, for a nucleon target.

There is another amplitude which appears at a twist-2
level, but at the αS order. This amplitude describes DVCS
of transversely polarized photons with helicity flip between
the initial and final photon states, respectively. Kinemati-
cal twist-4 corrections to this amplitude are the main sub-
ject of the considerations in this paper. At the twist-2 level
the helicity-flip amplitude depends on a new distribution
function, the so-called tensor gluon or gluon transversity
skewed parton distribution. Feynman diagrams involving
photon helicity-flip contribution to DVCS have been cal-
culated by two groups [19,20]. Their result can be repre-
sented as follows:

Atw2
µν =

∑
f

e2f

 αs(Q2)
4πξ

∫ 1

−1
dxF(µν)(x, ξ)C−(x, ξ), (28)
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where F(µν) is defined as a matrix element of a non-local
light-cone gluon operator:

F(µν)(x, ξ) =
∫ ∞

−∞

dλ
2π

e−ixλ

×〈p′|SGanµ
(

1
2
λn

)
Ganν

(
−1

2
λn

)
|p〉. (29)

The symbols S and (µν) stand for symmetrization of the
two indices and removal of the trace: SOµν = (1/2)Oµν +
(1/2)Oνµ − (1/4)gµνOαα and Ganν is a shorthand notation
for nαGaαν .

Parameterization of this matrix element in terms of
independent SPDs will be discussed below. Here we note
that the gluon operator (29) does not mix with quark oper-
ators and therefore the corresponding SPDs are sometimes
considered to be the cleanest probes of the gluonic content
of hadrons. The off-forward gluon helicity-flip SPDs in a
nucleon, determined by the matrix element of a twist-2
operator (29), can be numerically as large as other gluon
distributions. However, the amplitude Atw2

µν arises at the
NLO level i.e. it is proportional to αS(Q2). For realis-
tic values of Q2 of the order of a few GeV2 it is there-
fore natural to consider also power suppressed corrections
to the photon helicity-flip DVCS amplitude. In this pa-
per we provide an estimate of such higher-twist effects by
explicitly calculating a corresponding Wandzura–Wilczek
(WW) contribution which originates from the handbag di-
agram. Note that although the WW contribution is sup-
pressed like 1/Q2, it appears already at the tree level.

As we shall demonstrate in the following, a ratio of
twist-2 to twist-4 amplitudes behaves then like αs(Q2)/π :
m2/Q2, which is not necessarily very large if Q2 is of the
order of a few GeV2.

Recently, a similar analysis of the WW contribution
has been carried out for the process γ∗γ → f2(1270) [21].
The analog of a helicity-flip amplitude in this process is the
amplitude which describes scattering of transverse pho-
tons with different helicities. It was found that the latter
amplitude is rather sensitive to power corrections in the
region of Q2 ≤ 10 GeV2.

The WW kinematical correction is of course not the
full answer, as far as power suppressed corrections are con-
cerned. Assuming that factorizability holds for this ampli-
tude to 1/Q2 accuracy, there will be additional contribu-
tions from multi-parton operators of twist four, which we
have not calculated here. Note, however, that in the chiral
limit helicity is conserved along the quark line. As follows,
in order to account for two units of angular momentum
one has to consider the emission of two additional, trans-
verse gluons in a collinear configuration or a WW con-
tribution to an emission of a single gluon resulting in a
configuration with one unit of angular momentum carried
by partons. Current phenomenology of power corrections
is consistent with the conjecture that the matrix elements
of such three- or four-parton operators in a nucleon are
small [22]. This observation suggests that the WW power
correction discussed in this paper can provide a rather ac-
curate numerical description of higher-twist corrections to
the photon helicity-flip amplitude.

Fig. 1. Typical diagram for the photon–gluon scattering with
photon helicity flip. Arrows indicate polarizations of photons
and gluons, respectively

Photon helicity-flip amplitude in DVCS

As has been discussed in [23] the LO handbag diagram
contribution to DVCS leads to an effective s-channel pho-
ton helicity conservation for the leading-twist amplitude.
At the NLO a new twist-2 amplitude Atw2

µν arises, which
describes a DVCS process with photon helicity flip.

The twist-2 photon helicity-flip amplitude is absent in
the handbag diagram because of conservation of the an-
gular momentum along the photon–parton collision axis.
As the photon is a vector particle, to allow for flip of its
helicity one has to compensate for two units of angular
momentum. For the collinear twist-2 partonic amplitude
it is only possible by a simultaneous flip of gluon helici-
ties, see Fig. 1. As quarks have spin 1/2, their helicity flip
can provide at most one unit of angular momentum. As a
consequence, twist-2 photon helicity-flip amplitude is sen-
sitive to the helicity-flip gluon distribution in a nucleon.

However, a similar angular-momentum conservation
argument shows that such a distribution is forbidden in
the forward limit, i.e. in DIS, on a spin 1/2 target. In
the off-forward case a transverse component of the mo-
mentum transfer ∆⊥ can provide one unit of angular mo-
mentum, so DVCS offers the unique opportunity to in-
vestigate the helicity-flip gluon distribution in a nucleon.
As discussed in detail in [19,20,23] such information can
be extracted from azimuthal asymmetries ∝ cos 3φ of the
cross-section, where φ is the angle between the lepton and
nucleon planes.

Parameterization of the twist-2 gluonic matrix element
(29) was first introduced in [20] and recently revised in
[24]. In the notation of [24] one has

F (µν)(x, ξ)

= −S
∆µ⊥
4m

{
HgT (x, ξ)〈〈iσ+ν〉〉 + H̃gT (x, ξ)

∆ν⊥
m

〈〈1/m〉〉

+EgT (x, ξ)
(
∆ν⊥
2m

〈〈γ+〉〉 +
1
m

〈〈γν⊥〉〉
)

+ ẼgT (x, ξ)
1
m

〈〈γν⊥〉〉
}
. (30)

Note that µ and ν in (30) are understood as transverse
Lorentz indices. As a consequence, the twist-2 helicity-flip
amplitude (28) is gauge invariant to the 1/Q accuracy:

qµAtw2
µν = 0, Atw2

µν q
′ν = O(1/Q). (31)

A similar situation has been encountered before in the
case of the amplitude Tµν1 . To get a fully gauge invariant
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result one has to include in the calculation the kinematical
twist-3 contribution to the helicity-flip amplitude. As such
a term arises at the NLO and is not related to the con-
tribution from the handbag diagram which we are going
to discuss here, it will not be considered further. Instead,
we shall use prescription (26) in order to obtain a gauge
invariant expression. As a consequence one can combine
twist-2 and twist-4 contributions and write the helicity-
flip amplitude Aµν in the following form:

Aµν =
1
2

[
gµi⊥

(
gνj⊥ +

P ν∆j⊥
(Pq)

)
+ gµj⊥

(
gνi⊥ +

P ν∆i⊥
(Pq)

)
−
(
gµν⊥ +

P ν∆µ⊥
(Pq)

)
gij⊥

] [
Atw2

(ij) +
m2

Q2A
tw4
(ij)

]
. (32)

Note that Aµν is a general photon helicity-flip amplitude,
while Atw2

(ij) is the leading-twist contribution (28). The ap-
propriate Lorentz projection operator has been written in
order to make explicit the gauge invariant, symmetric and
traceless form of the helicity-flip amplitude. The twist-4
part, arising from the handbag diagram through the WW
mechanism can be parameterized as (m2/Q2)Atw4

(ij), with
m being the nucleon mass. A convenient physical inter-
pretation of this term follows from the observation that
beyond the leading-twist approximation one can imagine
partons as carrying non-zero orbital angular momentum
along the collision axis. That allows quarks to participate
in the LO, i.e. through the handbag diagram, in the pho-
ton helicity-flip amplitude. As two units of angular mo-
mentum have to flow through the hard vertex, such an
amplitude is suppressed by 1/Q2 and represents a twist-4
contribution.

Following [24], one observes that the twist-2 gluonic
matrix element (29) can be parameterized in terms of four
independent SPDs: HgT , E

g
T , H̃

g
T and ẼgT associated with

four transverse tensor structures:

chiral even: S
1
m2∆

i
⊥〈〈γj⊥〉〉, S

∆i⊥∆
j
⊥

m2 〈〈γ+〉〉, (33)

chiral odd: S
1
m
∆i⊥〈〈iσj+〉〉, S

∆i⊥∆
j
⊥

m2 〈〈1/m〉〉. (34)

Here, the four independent structures correspond to four
independent helicity-flip amplitudes in the gluon–nucleon
system. As the number of independent quark–nucleon
helicity-flip amplitudes is the same4, one expects that
these tensor structures will appear in the twist-4 ampli-
tude calculated in the WW approximation as well. It fol-
lows that the same basis of Dirac structures, (33) and (34),
can be used as the basis for an expansion of Atw4

(ij).

Photon helicity-flip amplitude
in the Wandzura-Wilczek approximation

Let us now discuss briefly the calculation of the WW con-
tribution to the photon helicity-flip amplitude in DVCS.

4 Note that we consider here only amplitudes with photon
helicity flip by two units

pp pp

+

Fig. 2. Typical handbag diagrams which contribute to the
twist-4 amplitude discussed in the text. Arrows indicate the
polarization of the photons. Angular-momentum conservation
requires that quarks carry an orbital angular momentum along
the collision axis

Formally, the WW contribution arises because operators
with external derivatives with respect to a total transla-
tion in a transverse direction give a non-zero contribution
in the DVCS kinematics.

The photon helicity-flip amplitude (32) is symmetric
in the indices µ and ν and therefore it arises from the
symmetric part of the T -product of the electromagnetic
currents in (2). The tree-level contribution results from
the handbag diagram depicted in Fig. 2. It can be written
as

Tµν =
1
π2

∫
d4xe−i(q+q′)xsµνλσ

xλ
x4

×〈p′|ψ̄(x)γσψ(−x) − ψ̄(−x)γσψ(x)|p〉 + . . . (35)

where the ellipses denote the contribution antisymmetric
in µ, ν, and sµνλσ = gµλg

ν
σ+gµσg

ν
λ−gµνgλσ. In order to obtain

the twist-4 WW contribution to the amplitude (32), we
have extracted from the matrix element

〈p′|ψ̄(x)γσψ(−x)|p〉 (36)

terms linear and bilinear in transverse structures γ⊥ and
∆⊥. The linear terms can in principle contribute because
to obtain the full answer one has to expand the exponent
e−i(q+q′)x in ∆⊥ as well. In the WW approximation one
neglects, as usual, contribution from quark–gluon opera-
tors. The final answer is then given in terms of twist-2
SPDs related to the matrix elements of vector and axial
operators H,E and H̃, Ẽ respectively; see (19) and (20).

The calculation is straightforward and technically
rather close to the approach described in [15]. Techni-
cal details of the present work are summarized in the ap-
pendix. For a detailed discussion of a similar calculation,
but with matrix elements parameterized in terms of dou-
ble distributions, see [14]. Note that because in the WW
approximation one neglects quark–gluon operators, gluon
emission diagrams, calculated in [12,25], have not been
taken into account here.

We have also found that apart from terms which con-
tribute to the photon helicity-flip amplitude (37) in the
WW approximation, one finds also a singular, non-
factorizable term ∼ ∆µ⊥∆ν⊥/(Pq) which contributes to the
amplitude Tµν3 in such a way that the factor (q + 2ξP )ν
there becomes equal to q′ν . Thus, the non-factorizable
term gives no contribution to the physical DVCS ampli-
tudes with a real photon in the final state, as discussed in
the previous section.
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The explicit expression for the twist-4 amplitude de-
fined in (32) reads:

A
(ij)
tw4 = ξ

∫ 1

−1
dtC−(t, ξ)

×
{

1
m2

(
∆i⊥G

j(u, ξ) +∆j⊥G
i(u, ξ) − trace

)
⊗U−(u, t, ξ)

+
1
m2

(
∆i⊥iεjk⊥ G̃k(u, ξ) +∆j⊥ε

ik
⊥ G̃k(u, ξ) − trace

)
⊗U+(u, t, ξ)

}
(37)

+2ξ
∫ 1

−1
dt [ln (t− ξ + iε) − ln (t+ ξ − iε)]

×
{
HijS (u, ξ) +GijS (u, ξ) ⊗W+(u, t, ξ)

+
1
2

(
iεik⊥ G̃

j
k + iεjk⊥ G̃

i
k

)
(u, ξ) ⊗W−(u, t, ξ) − traces

}
.

This is the main result of the present paper. For the sake
of clarity, we have introduced a shorthand notation for the
convolution integrals, e.g.

Gk(u, ξ) ⊗ U+(u, t, ξ) ≡
∫ 1

−1
duGk(u, ξ)U+(u, t, ξ). (38)

The flavor structure can be restored according to (24).
Note that although the twist-2 amplitude (28) is a fla-
vor singlet, the twist-4 WW correction arising from the
handbag diagram is a mixture of singlet and non-singlet
flavor contributions. All tensors which appear above are
understood to have transverse Lorentz indices. The func-
tions Gk, G̃k and kernels W±(u, t, ξ) are defined in (19)
and their explicit form is given in (21), (22) and (23).
The functions HijS , G

ij
S , G̃

ij and the kernels U±(u, t, ξ) are
defined below.

Explicit expressions for U±(u, t, ξ) read

U±(u, x, ξ) =
1
2

(x− ξ)

×
{
θ(x > ξ)

θ(u > x)
(u− ξ)2 −θ(x < ξ)θ(u < x)

(u− ξ)2
}

± 1
2

(x+ ξ)

×
{
θ(x > −ξ)θ(u > x)

(u+ ξ)2
− θ(x < −ξ)θ(u < x)

(u+ ξ)2

}
. (39)

To establish factorization, it is crucial to inspect the prop-
erties of the convolution integrals which appear in (37) at
the points t = ±ξ. For a test function f(u, ξ) one readily
finds

lim
ε→0

f(u, ξ) ⊗
[
U−(u, t = ±ξ + ε, ξ)

−U−(u, t = ±ξ − ε, ξ)
]

= 0,

lim
ε→0

f(u, ξ) ⊗
[
U+(u, t = ±ξ + ε, ξ)

−U+(u, t = ±ξ − ε, ξ)
]

= f(±ξ + 0, ξ) − f(±ξ − 0, ξ). (40)

One observes that the kernel U+ appears in (37) in
convolution with the function G̃k(u, ξ) which is defined in
terms of twist-2 SPDs and their derivatives, see (22). Note
that although in general the derivatives of a SPD with
respect to x and ξ are discontinuous at x = ±ξ, the com-
binations (x∂x + ξ∂ξ)Ẽ(H̃)(x, ξ) are continuous at these
points [15]. Hence, from (22) it follows that G̃k(u, ξ) has
no discontinuities at u = ±ξ. As a result, the convolution
integrals which appear in the first two terms in (37) define
a continuous function of t at t = ±ξ and factorization is
not violated.

The third term in (37) has only logarithmic, integrable
singularities at the points x = ±ξ in the coefficient func-
tion. One concludes therefore that this convolution inte-
gral is also well defined. Explicit expressions for the func-
tions HijS , G

ij
S , G̃

ij read

HijS (u, ξ) =
∆i⊥∆

j
⊥

4m2ξ2

(
1 − ξ ∂

∂ξ

)
×
{

〈〈 1
m

〉〉E(u, ξ) − 〈〈γ+〉〉(H + E)(u, ξ)
}

− 1
2m

{
∆i⊥
2mξ

〈〈γj⊥〉〉 +
∆j⊥
2mξ

〈〈γi⊥〉〉
}

(H + E)(u, ξ), (41)

GijS (u, ξ) = 〈〈γ+〉〉∆
i
⊥∆

j
⊥

4m2ξ2

×
[
ξ2
∂2

∂ξ2
−
(

1 − ξ ∂
∂ξ

)
u
∂

∂u

]
(H + E)(u, ξ)

−〈〈 1
m

〉〉∆
i
⊥∆

j
⊥

4m2ξ2

[
ξ2
∂2

∂ξ2
−
(

1 − ξ ∂
∂ξ

)
u
∂

∂u

]
E(u, ξ)

− 1
2m

{
∆i⊥
2mξ

〈〈γj⊥〉〉 +
∆j⊥
2mξ

〈〈γi⊥〉〉
}[

2ξ
∂

∂ξ
+ u

∂

∂u

]
×(H + E)(u, ξ), (42)

G̃ij(u, ξ) = 〈〈γ+γ5〉〉∆
i
⊥∆

j
⊥

4m2ξ2

×
[
ξ2
∂2

∂ξ2
− u ∂

∂u

(
1 − ξ ∂

∂ξ

)]
H̃(u, ξ)

−〈〈γ5
m

〉〉∆
i
⊥∆

j
⊥

4m2ξ

[
ξ2
∂2

∂ξ2
+ ξ

∂

∂ξ

(
2 + u

∂

∂u

)]
Ẽ(u, ξ)

− 1
m

{
∆i⊥
2mξ

〈〈γj⊥γ5〉〉 +
∆j⊥
2mξ

〈〈γi⊥γ5〉〉
}
ξ
∂

∂ξ
H̃(u, ξ)

+
1
m

{
∆j⊥
2mξ

〈〈γi⊥γ5〉〉 − ∆i⊥
2mξ

〈〈γj⊥γ5〉〉(1 + u
∂

∂u
)

}
×H̃(u, ξ). (43)

Note that the functions G̃k and G̃ij contain Dirac
structures which are defined with the help of the γ5 ma-
trix. Using relations which follow from the Gordon iden-
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tities one can express them through the basic structures
(33) and (34). For example, one finds

ε⊥ik∆
k
⊥〈〈γ5〉〉

= −1
2
t〈〈σ+

i 〉〉 − 2iξm〈〈γ⊥i〉〉− 1
2

i∆⊥i(2m〈〈γ+〉〉 − 2〈〈1〉〉),
2mε⊥ik∆

k
⊥〈〈γ+γ5〉〉

= −2ξε⊥ik∆
k
⊥〈〈γ5〉〉 − 2i(2m〈〈γ⊥i〉〉

−ξ∆⊥i〈〈1〉〉 + 2iξm̄2〈〈σ+
i 〉〉),

2mε⊥ik〈〈γk⊥γ5〉〉
= ε⊥ik∆

k
⊥〈〈γ5〉〉 − i∆⊥i〈〈1〉〉 − 2m̄2〈〈σ+

i 〉〉,
2mε⊥ik∆

k
⊥〈〈γ⊥jγ5〉〉

= ∆⊥jε⊥ik∆
k
⊥〈〈γ5〉〉 − i∆⊥i∆⊥j〈〈1〉〉

−2m̄2〈〈σ+
i 〉〉 + . . . (44)

Here the ellipses stand for terms which are proportional to
δij and therefore do not contribute to the traceless com-
bination which enters amplitude (37). Note that, as ex-
pected, all tensor structures present in the twist-2 matrix
element (30) appear also in the twist-4 WW contribution.

It is important to stress that all integrals which define
twist-4 amplitude (m2/Q2)Aσjtw4 in (37) are well defined
and therefore factorization is not violated, as far as the
tree-level WW contribution to the twist-4 photon helicity-
flip amplitude is concerned. This is an interesting result,
as current QCD factorization theorems for exclusive pro-
cesses guarantee factorization of the leading-twist contri-
bution to DVCS only.

Let us now consider in more detail contributions of the
so-called pion pole and D-terms. At small t the skewed par-
ton distribution Ẽ is dominated by the chiral contribution
of the pion pole [26,29] of the form

Ẽpion pole(x, ξ) =
4g2Am

2

−t+m2
π

1
ξ
ϕπ

(
x

ξ

)
θ(|x| ≤ ξ), (45)

where gA is the axial charge of the nucleon and ϕπ(u) is the
pion distribution amplitude. As was noted in [15] this con-
tribution cancels in G̃k. It is easy to see that in the func-
tion G̃ij defined in (43) the pion pole contribution again
vanishes under the action of the differential operator. It
can be understood as a consequence of P -invariance since
a pseudoscalar t-channel exchange cannot contribute to
the photon helicity-flip amplitude. Vanishing of the pion
pole contribution is therefore a non-trivial check of our
calculation.
D-terms [27] complete parameterizations of SPDs in

terms of double distributions [28]. They have the form

HD-term(x, ξ) = D
(
x

ξ

)
θ(|x| ≤ ξ),

ED-term(x, ξ) = −D
(
x

ξ

)
θ(|x| ≤ ξ). (46)

Here D(u) is an odd function of its argument. Estimates
in the framework of the chiral quark-soliton model of a nu-
cleon suggest that D-term can be numerically large [30].

Calculation of the DVCS cross-section shows that the ef-
fects of the D-term can be clearly seen [15,29]. In the
present case one readily finds that D-term gives a non-
zero contribution only through the function HijS (u, ξ):

HijS (u, ξ)|D-term = −∆
i
⊥∆

j
⊥

4m2ξ2
〈〈 1
m

〉〉θ(|x| ≤ ξ)

×
[
D

(
x

ξ

)
+
x

ξ
D′
(
x

ξ

)]
, (47)

where D′(x) ≡ d/dxD(x). In all other functions intro-
duced here the D-term contribution vanishes under the
action of the differential operators.

A detailed investigation of the relative importance of
the twist-4 correction as compared to the twist-2 ampli-
tude requires models for both gluon transversity and twist-
2 skewed quarks distributions in a nucleon. However, a
qualitative analysis shows that the WW contribution to
the photon helicity-flip amplitude can be large and its
consideration is perhaps mandatory for any attempt to
extract an estimate of the gluon transversity distribution
from the data. Assuming that the ratio of convolution in-
tegrals of SPD with the corresponding Wilson coefficients
is of the order of one, from (30) and (37) one finds that
the ratio of twist-2 to twist-4 amplitudes behaves like
αs(Q2)/π : m2/Q2, which gives numerically ∼ 0.25 and
∼ 1.2 for Q2 = 2 and 10 GeV2, respectively. This suggests
that it might be necessary to take into account the WW
contribution to the photon helicity-flip amplitude up to
values of Q2 of the order of 10 GeV2.

Summary and conclusions

It has been recognized for some time that photon helicity-
flip amplitude in DVCS on a nucleon provides a unique
opportunity to study the twist-2 gluon transversity distri-
bution in a nucleon. Because of its importance for studies
of novel aspects of nucleon structure, it is mandatory to
consider not only the leading-twist contribution, but the
power suppressed corrections to this amplitude as well.

In this paper we have calculated the twist-4 correc-
tion to the photon helicity-flip amplitude in DVCS in the
Wandzura–Wilczek approximation. It originates at the LO
from scattering of the virtual photon on quarks which
carry a non-zero projection of angular momentum along
the collision axis. We found a factorizable formula which
allows one to calculate the kinematical power correction
in terms of twist-2 quark skewed parton distributions.

Numerically, the power correction discussed in this pa-
per is relatively enhanced as compared to the twist-2 am-
plitude which arises at the NLO. As a consequence, for
moderate virtualities of the hard photon, Q2 ≤ 10 GeV2,
the kinematical twist-4 correction might give an important
contribution to the photon helicity-flip amplitude.
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Appendix

Twist-4 contribution to the matrix element
of the vector quark operator

In this appendix we present details of the calculation of
the matrix element (36) in the WW approximation. In
order to compute the twist-4 correction to the photon
helicity-flip amplitude in DVCS one has to expand (36)
to twist-4 accuracy, retaining terms which give a non-zero
contribution to the symmetric, traceless amplitude Aµν .
The resulting expansion for arbitrary x2 �= 0 has the form

〈p′|ψ̄(x)γσψ(−x)|p〉 = PσVtw2(Px, ξ) + V σ⊥
tw3(Px, ξ)

+ V σ⊥ρ⊥
tw4 (Px, ξ)xρ⊥ + . . . (48)

Note that ξ = −(1/2)(∆n/Pn) and ellipses denote the
twist-4 part which results in a term ∼ gµν⊥ and therefore
do not contribute to the amplitude Aµν .

The twist-3 term V σ⊥
tw3 in the expansion has been ob-

tained in [12,15]; see (19). The calculation of the twist-4
term V σ⊥ρ⊥

tw4 is equivalent to an expansion of the matrix
element (36) up to terms bilinear in the transverse struc-
tures γ⊥ and ∆⊥. The result reads

V σρ(Px, ξ)xρ

= i(x∆⊥)
∫ 1

−1
dte2it(Px)

[
Gσ(u, ξ) ⊗ U−(u, t, ξ)

+iεσρ⊥ G̃ρ(u, ξ) ⊗ U+(u, t, ξ)
]

−2m2xρ

{∫ t
−1

du [Hσρ(u, ξ) +Gσρ(u, ξ)]

+Gσρ(u, ξ) ⊗ [tW+(u, t, ξ) − ξW−(u, t, ξ)]

+iεσα⊥ G̃
ρ
α(u, ξ) ⊗ [tW−(u, t, ξ) − ξW+(u, t, ξ)]

}

−i(x∆⊥)
∫ 1

−1
dte2it(Px)

[
Gσ(u, ξ) ⊗W−(u, t, ξ)

+iεσα⊥ G̃α(u, ξ) ⊗W+(u, t, ξ)
]
. (49)

Here all Lorentz indices are understood to be transverse.
The first three lines of the above expression contribute to
the photon helicity-flip amplitude. The last line results in a
divergent, non-factorizable contribution to the amplitude
Tµν3 . As discussed in the text, this contribution vanishes
when contracted with a polarization vector of the final,
transverse, real photon.

All functions appearing in the right-hand side of the
above equation, exceptGσρ(u, ξ) andHσρ(u, ξ), have been

defined in the main body of the paper; see (19)–(22) for
Gk(u, ξ), G̃k(u, ξ) and W±(u, t, ξ) and (39) and (43) for
U±(u, t, ξ) and G̃kρ(u, ξ), respectively. The remaining
terms are defined as follows:

Gσρ(u, ξ) = 〈〈γ+〉〉∆
σ
⊥∆

ρ
⊥

4m2ξ2

×
[
ξ2
∂2

∂ξ2
−
(

1 − ξ ∂
∂ξ

)
u
∂

∂u

]
(H + E)(u, ξ)

−〈〈 1
m

〉〉∆
σ
⊥∆

ρ
⊥

4m2ξ2

[
ξ2
∂2

∂ξ2
−
(

1 − ξ ∂
∂ξ

)
u
∂

∂u

]
E(u, ξ)

− 1
m

{
∆σ⊥
2mξ

〈〈γρ⊥〉〉 +
∆ρ⊥
2mξ

〈〈γσ⊥〉〉
}
ξ
∂

∂ξ
(H + E)(u, ξ)

− ∆σ⊥
2m2ξ

〈〈γρ⊥〉〉u ∂
∂u

(H + E)(u, ξ), (50)

Hσρ(u, ξ) =
∆σ⊥∆

ρ
⊥

4m2ξ2

×
(

1 − ξ ∂
∂ξ

){
〈〈 1
m

〉〉E(u, ξ) − 〈〈γ+〉〉(H + E)(u, ξ)
}

− ∆σ⊥
2m2ξ

〈〈γρ⊥〉〉(H + E)(u, ξ). (51)

Note that, by comparing with (41) and (42), one finds

HσρS (u, ξ) =
1
2

(Hσρ(u, ξ) +Hρσ(u, ξ)) , (52)

GσρS (u, ξ) =
1
2

(Gσρ(u, ξ) +Gρσ(u, ξ)) . (53)

Note that one can obtain a sum rule for the twist-
4 part defined in (49). To this end, let us consider the
parameterization of the matrix element of the quark part
of the energy momentum tensor [32]:

1
2
〈p′|ψ̄ 1

2

[
γµi

↔
D
ν

+γν i
↔
D
µ]
ψ|p〉

= [A(∆2) +B(∆2)]P {µ〈〈γν}〉〉
−PµP νB(∆2)〈〈 1

m
〉〉 + C(∆2)(∆µ∆ν − gµν∆2)〈〈 1

m
〉〉

+C̄(∆2)gµνm〈〈1〉〉. (54)

Here {µν} denotes symmetrization with respect to the
indices µ and ν. Contracting both sides of this equation
with nµnν and using (19) one finds [32]∫ 1

−1
dttH(t, ξ) = B(∆2) + 4ξ2C(∆2),∫ 1

−1
dttE(t, ξ) = B(∆2) − 4ξ2C(∆2). (55)

Note that the form factor C(∆2) corresponds entirely to
the contribution of theD-term [27]. On the other hand, by
taking the transverse, traceless projection one finds with
the help of (49)

1
2
〈p′|ψ̄ 1

2

[
γµ⊥i

↔
D
ν

⊥ +γν⊥i
↔
D
µ

⊥ −trace
]
ψ|p〉
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=
1
4

[V µ⊥ν⊥(0, ξ) + V ν⊥µ⊥(0, ξ) − trace]

= C(∆2)∆(µ
⊥∆

ν)
⊥ 〈〈 1
m

〉〉. (56)

This sum rule provides a non-trivial check of the expansion
(49). Direct calculation gives

1
4

[V µ⊥ν⊥(0, ξ) + V ν⊥µ⊥(0, ξ) − trace]

= (−1)∆(µ
⊥∆

ν)
⊥ 〈〈 1
m

〉〉1
8

d2

dξ2

∫ 1

−1
dttE(t, ξ). (57)

Using (55) one finds agreement between (56) and (57).
Finally, for the sake of completeness, let us mention

two useful relations which allow one to simplify the r.h.s.
of (49). One can easily check that the following equations
hold:

d
dt

∫ 1

−1
duG̃σρ(u, ξ) [tW−(u, t, ξ) − ξW+(u, t, ξ)]

=
∫ 1

−1
duG̃σρ(u, ξ)W−(u, t, ξ),

d
dt

∫ 1

−1
duGσρ(u, ξ) [tW+(u, t, ξ) − ξW−(u, t, ξ)]

=
∫ 1

−1
duGσρ(u, ξ)W+(u, t, ξ) −Gσρ(t, ξ).

We have made use of these relations in order to bring the
expression for the amplitude (37) to the form quoted in
this paper.
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